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DIMENSIONS: Why do we need a new Data Handling architecture for
Sensor Networks?

Deepak Ganesan, Deborah Estrin

Abstract An important class of networked systems is emerg-
ing that involve very large numbers of small, low-power, wire-
less devices. These systems offer the ability to sense the en-
vironment densely, offering unprecedented opportunities for
many scientific disciplines to obtain detailed datasets for anal-
ysis. In this paper, we argue that a data handling architecture
for these devices should incorporate their extreme resource
constraints - energy, storage and processing - and spatio-
temporal interpretation of the physical world in the design,
cost model, and metrics of evaluation. We describe DIMEN-
SIONS, a system that provides a unified view of data handling
in sensor networks, incorporating long-term storage, multi-
resolution data access and spatio-temporal pattern mining.

1 Introduction

An important class of networked systems is emerging that in-
volve very large numbers of small, low-power, wireless de-
vices. These systems offer the ability to sense the environment
densely, offering unprecedented opportunities for many scien-
tific disciplines to obtain detailed datasets for analysis. The
data handling requirements from these systems will be mas-
sive, and disproportionate to the stringent resource constraints
on sensor nodes ( [4]). In this paper, we describe DIMEN-
SIONS, a system to enable scientists to observe, analyze and
query distributed sensor data at multiple resolutions, while ex-
ploiting spatio-temporal correlation.

Application Observed phenomena
Building Health Monitoring ( [3]) response to earthquakes, strong winds
Contaminant Flow Concentration pattern, pooling of con-

taminants, plume tracking
Habitat microclimate monitoring spatial and temporal variations

Table 1: Example Scientific Applications

Sensor networks place several requirements on a distributed
storage infrastructure. These systems are highly data-driven
(Table 1): they are deployed to observe, analyze and under-
stand the physical world. A data handling architecture must,
therefore, reconcile conflicting requirements:

• A fully centralized data collection strategy is infeasible

given the energy constraints on sensor nodes, and imprac-
tical given that sensor data has significant redundancy.

• Many queries over these systems will be spatio-temporal
in nature. The storage system should support efficient
spatio-temporal querying and mining for events of inter-
est. Such events exist at specific spatio-temporal scales,
and therefore in order to extract information from data,
one has to perform interpretation over a certain region.
Local processing alone is not sufficient. For example, to
identify pooling of contaminants, spatio-temporal inter-
pretation is done over data from a region.

• Users will routinely require compressed summaries of
large spatio-temporal sensor data. However, periodically
or occasionally, users will require detailed datasets from
a subset of sensors in the network.

In addressing the storage challenges of sensor networks, one
question immediately comes to mind:can we use existing dis-
tributed storage systems for our purpose?. We argue that there
are fundamental differences in the cost models, nature of the
data, and intended forms of use of sensor networks, that moti-
vate new approaches and metrics of evaluation.

• Hierarchical web caches ( [20]) are designed to lower la-
tency, network traffic and load. The cost models that drive
their caching strategy is based on user web access pat-
terns, strategically placing web pages that are frequently
accessed. Peer-to-peer systems are designed for efficient
lookup of files in a massively distributed database. These
systems do not capture two key challenges of sensor net-
works: (a) they are designed for a much less resource con-
strained infrastructure, unlike in sensor networks, where
communication of every bit should be accounted for (b)
the atomic unit of storage is a file, and unlike sensor data,
files do not exhibit spatio-temporal correlations.

• Geographic Information Systems (GIS) deal with data
that exhibit spatial correlations, but the processing is cen-
tralized, and algorithms are driven by the need to reduce
search cost, typically by optimizing disk access latency.

• Centralized approaches to compression of spatio-
temporal streams such as MPEG-2, are optimized for dif-
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ferent cost functions. Consider the problem of compress-
ing a 3 dimensional datacube (dimensions:x,y,time)
corresponding to data from a single sensor type on a grid
of nodes on a plane, much like a movie of sensor data.
MPEG-2 compresses first along the spatial axes (x,y),
and uses motion vectors to compress along the temporal
axis. The cost model driving such an approach is percep-
tual distortion, which is important in transmission of a
movie. Communication constraints in sensor networks
drive a time first, space next approach to compressing
the datacube, since temporal compression is local and far
cheaper than spatial compression.

• Wavelets ( [1, 2]) are a popular signal processing tech-
nique for lossy compression. In a centralized setting,
compression using wavelets can use entropy-based met-
rics to tradeoff compression benefit with reconstruction
error. In a sensor network setting, pieces of the data are
distributed among nodes in the network, and communica-
tion constraints force local cost metrics, that tradeoff the
communication overhead with the compression benefit.

Thus, large scale, untethered devices sensing the physical
world call for building systems that incorporate their extreme
resource constraints and spatio-temporal interpretation of the
physical world in the design, cost model, and metrics of eval-
uation of a data handling architecture. DIMENSIONS con-
strains traditional distributed systems design with the need to
make every bit of communication count, incorporates spatio-
temporal data reduction to distributed storage architectures, in-
troduces local cost functions to data compression techniques,
and adds distributed decision making and communication cost
to data mining paradigms. It provides unified view of data
handling in sensor networks incorporating long-term storage,
multi-resolution data access and spatio-temporal pattern min-
ing.

2 Design Goals

The following design goals allow DIMENSIONS to minimize
the bits communicated:

Multi-Resolution Data Storage: A fundamental design goal
of DIMENSIONS is the ability to extract sensor data in a
multi-resolution manner from a sensor network. Such a frame-
work offers multiple benefits (a) it allows users to look at low-
resolution data from a larger region cheaply, before deciding to
obtain more detailed and potentially more expensive datasets
(b) Compressed low-resolution sensor data from large number
of nodes can often be sufficient for spatio-temporal querying
to obtain statistical estimates of a large body of data [10].

Distributed: Design goals of distributed storage systems such
as [11, 12] of designing scalable, load-balanced, and robust
systems, are especially important for resource constrained dis-
tributed sensor networks. We have as a goal that the system
balances communication and computation load of querying
and multi-resolution data extraction from the network. In ad-
dition, it should leverage distributed storage resources to pro-
vide a long-term data storage capability. Robustness is criti-
cal given individual vulnerability of sensor nodes. Our system
shares design goals of sensor network protocols that compen-
sate for vulnerability by exploiting redundancy in communica-
tion and sensing.

Adapting to Correlations in sensor data: Correlations in
sensor data can be expected along multiple axes: temporal,
spatial and between multiple sensor modalities. These corre-
lations can be exploited to reduce dimensionality. While tem-
poral correlation can be exploited locally, the routing structure
needs to be tailored to spatial correlation between sensor nodes
for maximum data reduction. The correlation structure in data
will vary over time, depending on the changing characteristics
of the sensed field. For example, the correlation in acoustic
signals depend on the source location and orientation, which
can be time-varying for a mobile source. The storage structure
should be able to adapt to the correlation in sensor data.

3 Approach

The key components of our design are (a) temporal filtering (b)
wavRoute, our routing protocol for spatial wavelet decomposi-
tion (c) distributed long-term storage through adaptive wavelet
thresholding. We describe a few usage models of the stor-
age system, including multi-resolution data extraction, spatio-
temporal data mining, and feature routing. To facilitate the
description, we use a simplified grid topology model, whose
parameters are defined in Table 2.

The approach to DIMENSIONS is based on wavelet threshold-
ing, a popular signal processing technique for multiresolution
analysis and compression [1, 2]. Wavelets offer numerous ad-
vantages over other signal processing techniques for viewing
a spatio-temporal dataset (a) ability to view the data at multi-
ple spatial and temporal scales (b) ability to extract important
features in the data such as abrupt changes at various scales
thereby obtaining good compression (c) easy distributed im-
plementation and (d) low computation and memory overhead.
The crucial observation behind wavelet thresholding when ap-
plied to compression is that for typical time-series signals, a
few coefficients suffice for reasonably accurate signal recon-
struction.
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n Number of Nodes in the network
R Region participating in the wavelet decomposition. Sim-

plified model assumes grid placement of
√
nx
√
n nodes

λ Number of levels in the spatial wavelet decomposition.√
n = 2λ andλ = 1

2 logn
(Xapex, Yapex) Location of the apex of the decomposition pyramid

D0 Time-series data at each node, before the spatial decom-
position

Huffman Entropy encoding scheme used

Table 2: Parameters

3.1 Temporal decomposition

Given that communication is the most expensive operation in
terms of energy, local data reduction is performed as the first
step. By reducing the temporal datastream to include only po-
tentially interesting events, and compressing the time-series,
the overhead of spatial decomposition is reduced. The lo-
cal signal processing involves two steps: (a) Each node per-
forms simple real-time filtering to extract time-series that may
represent interesting events (b) These time-series snippets are
compressed using wavelet thresholding to yield a set of coef-
ficients that capture most of the energy of the signal. In the
example of building health monitoring (Table 1), the filtering
is a simple amplitude thresholding i.e. events that crosses a
pre-determinedSNR threshold. The thresholding yields short
time-series sequences of building vibrations.
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Figure 1: Grid Topology Model

Algorithm 1: ClusterWaveletTransform
Data : R: co-ordinates of region;λ: number of decomposition levels;t - current

time
Result : Spatial wavelet decomposition ofλ levels
/* Location of apex of the pyramid */;
(Xapex, Yapex) = HashInRegion(R,t);
l = 1 /* initialize level */;
while l ≤ λ do

(Xl, Yl) = LocateClusterHead (l, (Xapex, Yapex));
if I am clusterhead for levell− 1 then

GeoRoute Coefficients to(Xl, Yl);
current section becomes this one;

if I am clusterhead for levell then
Get coefficients from clusterheads at levell− 1;
Perform a 2 dimensional Wavelet transform;
Store Coefficients and Deltas Locally. Save Coefficients for next iteration;

3.2 wavRoute: A Routing Protocol for Spatial
Wavelet Decomposition

Spatial data reduction involves applying a multi-level 2D
wavelet transform on the coefficients obtained from 1D tem-
poral data reduction described in Section 3.1. Our goals in
designing this routing protocol are twofold: (a) minimize the
communication overhead of performing a spatial wavelet de-
composition (b) balance the communication, computation and
storage load among nodes in the network.wavRouteuses a re-
cursive grid decomposition of a physical space into tiles (such
as the one proposed in [17]), in conjunction with geographic
routing ( [15, 16]) as shown in Algorithm 1. At each level of
the decomposition, coefficients from each tile are compressed
using 2D wavelet transform at a selected clusterhead, which
locally stores the coefficients and details from the decompo-
sition, and forwards the resulting coefficients to the cluster-
head at the next level of decomposition (Figure 2). The al-
gorithm is executed recursively (Figure 1(a)): all nodes in the
network participate in Step 1, in following steps, only clus-
terheads from the previous step participate. In the following
sections, we elaborate on the algorithm used to the select clus-
terhead location and the geographic forwarding protocol used.

Coefficient

Delta

Level l−1 clusterheads

Send Coefficients To
Level l+1 clusterhead

Get Coefficients From
Decoder

Encoder Quantizer

Local
Storage

Dequantizer

Huffman

Huffman

2D Wavelet
Transform

on Tile

Figure 2: Protocol at clusterhead at depth i

Algorithm 2: LocateClusterHead
Data : l: current level of decomposition;(Xapex, Yapex): location of apex of

Pyramid

Result : (Xch, Ych): Co-ordinates of clusterhead location for leveli tile

X0 tile = bXmy
2l
c;X1 tile = X0 tile + 2l;

Y0 tile = bYmy
2l
c; Y1 tile = Y0 tile + 2l;

Compute Centroid of Tile;
Compute Euclidean Shortest Path Vector L from Centroid to Storage Node;
(Xsn, Ysn) = Intersection Between Path Vector L and Tile boundary;

Clusterhead Selection: To minimize communication cost,
the choice of clusterhead should be tied into the routing struc-
ture. We use a simple clusterhead selection procedure that
gives us good complexity properties (described in Section 4).
First, the apex of the decomposition pyramid is first chosen
by hashing into the geographic region,R (Figure 1(a)). Then,
for each tile, the euclidean shortest path between the centroid
of the tile and the apex location ((Xapex, Yapex)) is computed.
The point where this path intersects the tile boundary is chosen
to be the location of the clusterhead. Since each node can in-
dependently calculate the location of the tile based on its own
geographic co-ordinates, the clusterhead location can be inde-
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pendently computed by each node.

Modified GPSR: We use a modified GPSR approach pro-
posed in [15] to route packets to clusterheads. A brief review
of the approach is described below, details can be obtained
from [16] and [15]. GPSR is astrongly geographicrouting
protocol that takes a location rather than an address to deliver
packets. [15] propose a modified GPSR protocol that ensures
that packets are delivered to the nodeclosestto the destination
location. When no node is located at the given location, GPSR
finds the packet along the ’perimeter’ of a planar subgraph of
the original graph, using the right hand rule. Thus, GPSR uses
a combination of greedy, and if required, perimeter forward-
ing, to reach the node closest to the destination.

Balancing Load: The combination of small tile size and
wavelet decomposition at each clusterhead inwavRoutere-
duces the penalty incurred by being a clusterhead greatly. Sec-
tion 4 shows that under certain assumptions of topology and
routing, the worst case overhead of storage and communica-
tion at any clusterhead is withinlog(n) (n = network size)
times the overhead at any other node, the case occurring when
the same node is chosen as a clusterhead at every level. To
further balance this overhead,wavRouteperiodically changes
the routing structure, by hashing to different apex locations.
Changing the apex location implicitly changes the cluster-
heads selected at each level of the routing hierarchy, and bal-
ances the load among nodes in the network.

3.3 Long-term Storage

Long term storage is provided in DIMENSIONS, by exploiting
the fact that thresholded wavelet coefficients lend themselves
to good compression benefit ( [1, 2]). Our rationale in bal-
ancing the need to retain detailed datasets for multi-resolution
data collection and to provide long-term storage is that if scien-
tists were interested in detailed datasets, they would extract it
within a reasonable interval (weeks). Long-term storage is pri-
marily to enable spatio-temporal pattern mining, for which it is
sufficient to store key features of data. Thus, the wavelet com-
pression threshold is aged progressively, lending older data to
progressively better compression, but retaining key features of
data.

increasing lossy compression

period of lossless storage

Fresh sensor data

Figure 3: Long term storage

3.4 Usage Models

A distributed multi-resolution storage infrastructure benefits
search and retrieval of datasets that exhibit spatial correlation,
and applications that use such data.

Multi-Resolution Data Extraction: Data from a specified
region and time-frame can be extracted in a multi-resolution
manner by specifying a threshold for the detail coefficients.
The query is flooded to the specified region using a protocol
such as diffusion ( [9]) and geo-routing. Nodes apply the spec-
ified threshold in to the stored details, and send the compressed
sparse vector back to the querying node.

Querying for Spatio-Temporal features: The hierarchical
organization of data can be used to search for spatio-temporal
patterns efficiently by reducing the search space. For example,
consider the search for pooling of contaminant flow. Such a
feature has a large spatial span, and therefore significant en-
ergy benefit can be obtained by querying only a few cluster-
heads rather than the entire network. Temporal patterns can
be efficiently queried in a drill-down manner on the wavelet
hierarchy by eliminating branches whose wavelet coefficients
do not partially match the pattern, thereby reducing the num-
ber of nodes queried. Summarized coefficients that result from
wavelet decomposition have been found to be excellent for ap-
proximate querying ( [6, 10]), and to obtain statistical esti-
mates from large bodies of data (Section 5).

Feature Routing and Edge Detection: Target tracking and
routing along spatio-temporal patterns such as temperature
contours, have been identified as compelling sensor network
applications. The problem of edge detection has similar re-
quirements, and is important for applications like geographic
routing, localization, beacon placement and others, where ex-
plicit knowledge of edges can improve performance of the al-
gorithm. Our architecture can be used to assist these appli-
cations, since it good at identifying discontinuities. By pro-
gressively querying for the specific features, communication
overhead of searching for features can be restricted to only a
few nodes in the network.

Debugging: Other datasets besides sensor data exhibit spa-
tial correlations. One such example is packet throughput data:
throughput from a specific transmitter to two receivers that are
spatially proximate are closely correlated; similarly, through-
put from two proximate transmitters to a specific receiver are
closely correlated. Our system serves two purposes for these
datasets (a) they can be used to extract aggregate statistics
(Section 5) with low communication cost (b) discontinuities
represent network hotspots, deep fades or effects of interfer-
ence, which are important protocol parameters, and can be
easily queried.

4



www.manaraa.com

4 Communication, Computation and
Storage Complexity

In this section, we provide a back of the envelope compari-
son of the benefits of performing a hierarchical wavelet de-
composition over a centralized data collection strategy. Our
description will only address the average and worst case com-
munication and storage load on the nodes in the network, while
Table 3 provides a more complete summary of the average and
worst-case complexity.

A square grid topology withn nodes is considered (
√
n side as

shown in Figure 1(b)), where
√
n = 2λ. Clusterheads at each

step are selected to be the one closest to the lower left-corner
of the tile. Communication is only along edges of the grid,
each of which is of length 1 unit. The cost of transmission and
reception of one unit of data along a link of length 1, costs 1
unit of energy. Each node has initiallyD0 data to send. While
realistic topologies are far from as regular as the one proposed
( [8]), and the cost model is more complicated, the simple case
captures essential tradeoffs in construction of multi-resolution
hierarchies.

Communication Overhead:

The overhead forcentralizeddecomposition can be computed
from the total number of edges traversed on the grid (n(

√
n−

1) for a
√
nx
√
n grid) The total cost, therefore, isn(

√
n −

1)D0, giving anAverage-casecommunication complexity of
O(
√
nD0). The worst communication overhead is the storage

node itself, or the sensor node(s) closest to the storage node,
if the storage node is not power constrained. Thus, theWorst-
casecommunication complexity isO(n1.5D0).

To compute the overhead of thehierarchical decomposition,
we use the fact that decomposing a2x2 tile in which each node
has dataD0, results inD0 of coefficients, that are both sent to
the next level clusterhead, and stored locally, and3D0 of deltas
that are only stored locally. The amount of data generated and
stored at a clusterhead at any level of the decomposition, is
therefore, the same. In reality, quantization and huffman en-
coding would change these values depending on the nature of
the dataset, yet, the raw size of the data is a reasonable indica-
tor of the communication overhead.

At level l of the decomposition, a communication edge
is of length 2l−1, and there are22λ−2l tiles (computed
as Area of Region

Area of Tile ), giving a communication overhead of

22λ+1−l. Over λ levels of decomposition, the total cost is,
thus,

∑
0≤l≤λ 22λ+1−l = 2λ+1(2λ − 1). Thus, the total

communication cost isO(nD0) and theAverage-casecom-
munication cost isO(D0). In the worst case, a node is on the
forwarding path at every level of the hierarchy. Since there
areλ levels and each level forwards data3D0 to a clusterhead,
worst case data passing through a node is3λD0 = 3D0logn.

Worst-caseCommunication Complexity =O(D0logn).

5 Sample Data Analysis

Our system is currently under development. The following are
some initial results from offline analysis of experimental data.
The dataset that we consider is a packet throughput dataset
from a 12x14 grid of nodes (detailed descriptions can be ob-
tained from [8]). Each node has throughput data from all
other transmitters, for twenty different settings of transmit sig-
nal strength from each node. Figure 4 shows the results of a
query to obtain the throughput vs distance map from the com-
pressed data. The error is small in the approximated data, and
gives us large compression benefit.
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Figure 4: Approximate Queries on Compressed coefficients

6 Related Work

In building this system, we draw from significant research
in information theory [1, 2, 19], databases [10, 6], spatio-
temporal data mining [21, 5], and previous work in sensor
networks [15, 9]. [6] and others have used wavelet-based syn-
opsis data structures for approximate querying of massive data
sets. Quadtrees are popularly used in image processing and
databases ( [5]), and resemble the hierarchies that we build up.
Other data structures such as R-trees, kd-trees and their vari-
ants ( [21]) are used for spatial feature indexing. Triangular
Irregular Networks (TIN [21]) is used in for multi-layered pro-
cessing in cartography, and other geographical datasets. Some
of these structures could find applicability in our context, and
will be considered in future work. [15] proposes a sensor net-
work storage architecture that leverage the excellent lookup
complexity of distributed hash tables (DHT) for event storage.
DHTs are useful when queries are not spatio-temporal in na-
ture, while our system organizes data spatially to enable such
queries.
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Centralized Hierarchical
Avg. Case Worst Case Avg. Case Worst Case

Communication O(
√
nD0) O(n1.5D0) O(D0) O(D0logn)

Computation O(D0logD0) O(nD0) O(D0logD0) O(D0log(nD0))
Storage O(D0) O(nD0) O(D0) O(D0logn)

Table 3: Communication, Computation, and Storage Overhead

7 Summary and Research Agenda

This paper made the case for DIMENSIONS, a large-scale dis-
tributed multi-resolution storage system that exploits spatio-
temporal correlations in sensor data. Many important research
issues still need to be addressed:

What are the benefits from temporal and spatial data compres-
sion? To fully understand correlations in sensor data, and the
benefits provided by temporal and spatial compression, we are
deploying large scale measurement infrastructure, for sensor
data collection in realistic settings,

What processing should be placed at different levels of the hi-
erarchy? The clusterheads at various levels of the hierarchy
can interpret the data at different scales, to obtain information
about spatio-temporal patterns. A challenging problem is the
development of algorithms for spatio-temporal interpretation
of data.

How can we learn correlations? Recent work in informa-
tion theory ( [19]) proposes practical codes to exploit the the-
oretical benefits of blind source coding known as the Slepian
Wolf theorem. They suggest that joint correlation statistics can
be used to compress data at the source, without requiring any
form of communication. The caveat is the joint correlation
statistics are considered known and are stable over periods of
time. Clusterheads in our architecture are in a position to study
the correlation statistics of wavelet coefficients over time, and
incorporate these statistics to enable further compression ben-
efit. How stable are these statistics over time?

How can we obtain energy savings from distributed compres-
sion? Better compression doesn’t necessarily translate into
energy savings in communication since the cost of passive lis-
tening is comparable to transmission ( [4]). Obtaining energy
savings in communication of data involves (a) reducing size of
data to be transmitted (b) scheduling communication to mini-
mize listen time as well as transmit time. How do we sched-
ule communication to translate compression benefit to energy
benefit?
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